Non-local ansatze for the Dirac equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1988 J. Phys. A: Math. Gen. 21 L1117
(http://iopscience.iop.org/0305-4470/21/23/002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 13:31

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Non-local ansätze for the Dirac equation

W I Fushchich and R Z Zhdanov
Institute of Mathematics, Repin Street 3, Kiev-4, USSR

Received 5 July 1988

Abstract

Using non-local (non-Lie) symmetry of the linear Dirac equation we have constructed a number of new ansätze reducing it to systems of ordinary differential equations.

It is well known (see e.g. [1]) that the Poincaré group $\mathrm{P}(1,3)$ is a maximal local (in Lie's sense) invariance group of the linear Dirac equation

$$
\begin{equation*}
\left(\mathrm{i} \gamma_{\mu} \partial_{\mu}+m\right) \psi(x)=0 \quad m=\mathrm{constant} \tag{1}
\end{equation*}
$$

where $\psi=\psi\left(x_{0}, \boldsymbol{x}\right)$ is a four-component spinor, $\partial_{\mu} \equiv \partial / \partial x_{\mu}, \mu=\overline{0,3}$ and γ_{μ} are imaginary 4×4 matrices satisfying the Clifford algebra

$$
\gamma_{\mu} \gamma_{\nu}+\gamma_{\nu} \gamma_{\mu}=2 g_{\mu \nu} I \equiv 2 I\left\{\begin{aligned}
1 & \mu=\nu=0 \\
-1 & \mu=\nu=\overline{1,3} \\
0 & \mu \neq \nu
\end{aligned}\right.
$$

In $[2,3]$ ansätze reducing the Dirac equation to systems of ordinary differential equations (ODE) were constructed, the subgroup structure of the group $\mathrm{P}(1,3)$ investigated in detail by Patera et al $[4,5]$ being used.

As shown in $[1,6,7]$ equation (1) possesses non-local (non-Lie) symmetry. So far this additional non-local symmetry has not been used to construct ansätze reducing the Dirac equation to systems of ode. In the present paper we construct a number of such ansätze following an approach suggested in $[3,8]$.

If one puts

$$
\Gamma_{\mu}=\operatorname{diag}\left(-\mathrm{i} \gamma_{\mu},-\mathrm{i} \gamma_{\mu}\right) \quad \Psi^{\mathrm{T}}=(\operatorname{Re} \psi, \operatorname{Im} \psi)^{\mathrm{T}}
$$

then equation (1) becomes

$$
\begin{equation*}
\left(\Gamma_{\mu} \partial_{\mu}-m\right) \Psi(x)=0 \tag{2}
\end{equation*}
$$

It is common knowledge that the complete set of first-order symmetry operators of the Dirac equation (2) is not a Lie algebra. We have succeeded in picking out the subset which forms the Lie algebra of the Poincaré group:

$$
\begin{align*}
& P_{\mu}=\left[1+\varepsilon\left(\Gamma_{4}+\Gamma_{5}\right)\right] \partial^{\mu}+\varepsilon m\left(\Gamma_{4}+\Gamma_{5}\right) \Gamma_{\mu} \tag{3}\\
& J_{\mu \nu}=-x_{\mu} \partial^{\nu}+x_{\nu} \partial^{\mu}-\frac{1}{4}\left(\Gamma_{\mu} \Gamma_{\nu}-\Gamma_{\nu} \Gamma_{\mu}\right) \tag{4}
\end{align*}
$$

where $\varepsilon=$ constant, $\partial^{\mu}=g^{\mu \nu} \partial_{\nu}$ for $\mu, \nu=\overline{0,3}$ and

$$
\Gamma_{4}+\Gamma_{5}=2\left(\begin{array}{cc}
0 & 0 \\
\gamma_{0} \gamma_{1} \gamma_{2} \gamma_{3} & 0
\end{array}\right) .
$$

It is important to note that operators (3) generate a non-local group of transformations
$\Psi^{\prime}=\left[1-\varepsilon m\left(\Gamma_{4}+\Gamma_{5}\right) \theta^{\mu} \Gamma_{\mu}\right] \Psi+\varepsilon\left(\Gamma_{4}+\Gamma_{5}\right) \theta_{\mu} \Psi_{x_{\mu}} \quad x_{\mu}^{\prime}=x_{\mu}+\theta_{\mu}$
where θ_{μ} are group parameters.
According to $[4,8]$ there exists a correspondence between three-dimensional subalgebras of the algebra (3) and (4) and ansätze reducing the Dirac equation (2) to ode. Omitting very cumbersome intermediate calculations we write the final result for the non-local ansätze for the spinor field.

1. $\left\langle P_{0}+P_{3}, P_{1}, P_{2}\right\rangle$
$\Psi(x)=\exp \left[\varepsilon m \Gamma_{45}\left(\Gamma_{1} x_{1}+\Gamma_{2} x_{2}+\frac{1}{2} \eta \Gamma_{03}\right)\right] \varphi(\xi)$
2. $\left\langle P_{1}, P_{2}, P_{3}\right\rangle$
$\Psi(x)=\exp \left[\varepsilon m \Gamma_{45}\left(\Gamma_{1} x_{1}+\Gamma_{2} x_{2}+\Gamma_{3} x_{3}\right)\right] \varphi\left(x_{0}\right)$
3. $\left\langle P_{0}, P_{1}, P_{2}\right\rangle$
$\Psi(x)=\exp \left[\varepsilon m \Gamma_{45}\left(\Gamma_{1} x_{1}+\Gamma_{2} x_{2}-\Gamma_{0} x_{0}\right)\right] \varphi\left(x_{3}\right)$
4. $\left\langle J_{03}, P_{1}, P_{2}\right\rangle$
$\Psi(x)=\exp \left[\varepsilon m \Gamma_{45}\left(\Gamma_{1} x_{1}+\Gamma_{2} x_{2}\right)\right] \exp \left(-\frac{1}{2} \Gamma_{0} \Gamma_{3} \ln \xi\right) \varphi\left(x_{0}^{2}-x_{3}^{2}\right)$
5. $\left\langle J_{03}, P_{0}+P_{3}, P_{1}\right\rangle$
$\Psi(x)=\exp \left[\varepsilon m \Gamma_{45}\left(\Gamma_{1} x_{1}+\frac{1}{2} \eta \Gamma_{03}\right)\right] \exp \left(-\frac{1}{2} \Gamma_{0} \Gamma_{3} \ln \xi\right) \varphi\left(x_{2}\right)$
6. $\left\langle J_{03}+\alpha P_{2}, P_{0}, P_{3}\right\rangle$
$\Psi(x)=\exp \left[\varepsilon m \Gamma_{45}\left(\Gamma_{3} x_{3}-\Gamma_{0} x_{0}\right)\right] \exp \left\{\left[\varepsilon \Gamma_{45} \Gamma_{2}+(1 / 2 \alpha) \Gamma_{0} \Gamma_{3}\left(\varepsilon \Gamma_{45}-1\right)\right] x_{2}\right\} \varphi\left(x_{1}\right)$
7. $\left\langle J_{03}+\alpha P_{2}, P_{0}+P_{3}, P_{1}\right\rangle$
$\Psi(x)=\exp \left[\varepsilon m \Gamma_{45}\left(\Gamma_{1} x_{1}+\frac{1}{2} \eta \Gamma_{03}\right)\right] \exp \left\{x_{2}\left[m \xi^{2} \Gamma_{2}\left(1+2 \varepsilon \Gamma_{45}\right)\right.\right.$

$$
\left.\left.-\frac{1}{2} \xi \Gamma_{2} \Gamma_{03}-3 \alpha \varepsilon m \xi \Gamma_{03} \Gamma_{45}-\varepsilon m \xi^{2} \Gamma_{2} \Gamma_{45} \Gamma_{0} \Gamma_{3}\right]\right\} \varphi(\xi)
$$

8. $\left\langle J_{12}, P_{0}, P_{3}\right\rangle$
$\Psi(x)=\exp \left[\varepsilon m \Gamma_{45}\left(\Gamma_{3} x_{3}-\Gamma_{0} x_{0}\right)\right] \exp \left[\frac{1}{2} \Gamma_{1} \Gamma_{2} \tan ^{-1}\left(x_{1} / x_{2}\right)\right] \varphi\left(x_{1}^{2}+x_{2}^{2}\right)$
9. $\left\langle J_{12}+\alpha P_{0}, P_{1}, P_{2}\right\rangle$
$\Psi(x)=\exp \left[\varepsilon m \Gamma_{45}\left(\Gamma_{1} x_{1}+\Gamma_{2} x_{2}\right)\right] \exp \left\{\left[(1 / 2 \alpha) \Gamma_{1} \Gamma_{2}\left(1-\varepsilon \Gamma_{45}\right)-\varepsilon m \Gamma_{45} \Gamma_{0}\right] x_{0}\right\} \varphi\left(x_{3}\right)$
10. $\left\langle J_{12}+\alpha P_{3}, P_{1}, P_{2}\right\rangle$
$\Psi(x)=\exp \left[\varepsilon m \Gamma_{45}\left(\Gamma_{1} x_{1}+\Gamma_{2} x_{2}\right)\right] \exp \left\{\left[\varepsilon m \Gamma_{45} \Gamma_{3}+(1 / 2 \alpha)\left(1-\varepsilon \Gamma_{45}\right) \Gamma_{1} \Gamma_{2}\right] x_{2}\right\} \varphi\left(x_{0}\right)$
11. $\left\langle J_{12}+P_{0}+P_{3}, P_{1}, P_{2}\right\rangle$
$\Psi(x)=\exp \left[\varepsilon m \Gamma_{45}\left(\Gamma_{1} x_{1}+\Gamma_{2} x_{2}\right)\right] \exp \left\{\frac{1}{2} \eta\left[\varepsilon m \Gamma_{45} \Gamma_{03}+\frac{1}{2}\left(1-\varepsilon \Gamma_{45}\right) \Gamma_{1} \Gamma_{2}\right]\right\} \varphi(\xi)$
12. $\left\langle G_{1}, P_{0}+P_{3}, P_{2}\right\rangle$
$\Psi(x)=\exp \left[\varepsilon m \Gamma_{45}\left(\Gamma_{2} x_{2}+\frac{1}{2} \eta \Gamma_{03}\right)\right] \exp \left[-\left(x_{2} / 2 \xi\right) \Gamma_{03}\left(\Gamma_{1}+\varepsilon m x_{2} \Gamma_{45}\right)\right] \varphi(\xi)$
13. $\left\langle G_{1}, P_{0}+P_{3}, P_{1}+\alpha P_{2}\right\rangle$

$$
\begin{aligned}
\Psi(x)=\exp \{ & \left.\varepsilon m \Gamma_{45}\left[x_{1}\left(\Gamma_{1}+\alpha \Gamma_{2}\right)+\frac{1}{2} \eta \Gamma_{03}\right]\right\} \\
& \times \exp \left\{\left[\left(\alpha x_{1}-x_{2}\right) / \alpha \xi\right]\left[\frac{1}{2} \Gamma_{1} \Gamma_{03}-\varepsilon m \xi \Gamma_{45}\left(\Gamma_{1}+\alpha \Gamma_{2}\right)\right]\right\} \varphi(\xi)
\end{aligned}
$$

14. $\left\langle G_{1}+P_{2}, P_{0}+P_{3}, P_{1}\right\rangle$
$\Psi(x)=\exp \left[\varepsilon m \Gamma_{45}\left(x_{1} \Gamma_{1}+\frac{1}{2} \eta \Gamma_{03}\right)\right]$

$$
\times \exp \left\{x_{2}\left[\varepsilon m \Gamma_{45}\left(\Gamma_{2}-\xi \Gamma_{1}\right)+\frac{1}{2}\left(\varepsilon \Gamma_{45}-1\right) \Gamma_{03} \Gamma_{1}\right]\right\} \varphi(\xi)
$$

15. $\left\langle G_{1}+P_{0}, P_{0}+P_{3}, P_{2}\right\rangle$
$\Psi(x)=\exp \left[\varepsilon m \Gamma_{45}\left(x_{2} \Gamma_{2}+\frac{1}{2} \eta \Gamma_{03}\right)\right]$
$\times \exp \left[m x_{1}\left(\Gamma_{1}+\xi \Gamma_{03}+3 \varepsilon \Gamma_{1} \Gamma_{45}-4 \varepsilon \xi \Gamma_{45} \Gamma_{03}\right)\right] \varphi(\xi)$
16. $\left\langle G_{1}+P_{0}, P_{0}+P_{3}, P_{1}\right\rangle$
$\Psi(x)=\exp \left[\varepsilon m \Gamma_{45}\left(\Gamma_{1} x_{1}+\frac{1}{2} \eta \Gamma_{03}\right)\right] \exp \left[m \Gamma_{2} x_{2}\left(3 \varepsilon \Gamma_{45}+\varepsilon \xi \Gamma_{45} \Gamma_{03} \Gamma_{1}-1\right)\right] \varphi(\xi)$
17. $\left\langle G_{1}+P_{0}, P_{1}+\alpha P_{2}, P_{0}+P_{3}\right\rangle$
$\Psi(x)=\exp \left\{\varepsilon m \Gamma_{45}\left[\frac{1}{2} \eta \Gamma_{03}+\left(x_{2} / \alpha\right)\left(\Gamma_{1}+\alpha \Gamma_{2}\right)\right]\right\}$

$$
\begin{aligned}
& \times \exp \llbracket\left[m /\left(\alpha^{2}+1\right)\right]\left(1-2 \varepsilon \Gamma_{45}\right)\left[\left(\Gamma_{2}-\alpha \Gamma_{1}\right)-\alpha \xi \Gamma_{03}+\varepsilon\left(\alpha \Gamma_{1}-\Gamma_{2}\right) \Gamma_{45}\right] \\
& \left.\times\left\{\varepsilon \Gamma_{45}\left[\Gamma_{0} \Gamma_{3}+(1 / \alpha) \Gamma_{1} \Gamma_{2}+\Gamma_{03} \Gamma_{1}-1\right]-1\right\}\left(\alpha x_{1}-x_{2}\right)\right] \varphi(\xi)
\end{aligned}
$$

18. $\left\langle J_{03}+\alpha J_{12}, P_{0}, P_{3}\right\rangle$
$\Psi(x)=\exp \left[\varepsilon m \Gamma_{45}\left(\Gamma_{3} x_{3}-\Gamma_{0} x_{0}\right)\right] \exp \left[(1 / 2 \alpha)\left(\Gamma_{0} \Gamma_{3}+\alpha \Gamma_{1} \Gamma_{2}\right)\right.$

$$
\left.\times \tan ^{-1}\left(x_{1} / x_{2}\right)\right] \varphi\left(x_{1}^{2}+x_{2}^{2}\right)
$$

19. $\left\langle J_{03}+\alpha J_{12}, P_{1}, P_{2}\right\rangle$
$\Psi(x)=\exp \left[\varepsilon m \Gamma_{45}\left(\Gamma_{1} x_{1}+\Gamma_{2} x_{2}\right)\right] \exp \left[-\frac{1}{2}\left(\Gamma_{0} \Gamma_{3}+\alpha \Gamma_{1} \Gamma_{2}\right) \ln \xi\right] \varphi\left(x_{0}^{2}-x_{3}^{2}\right)$
20. $\left\langle G_{1}, G_{2}, P_{0}+P_{3}\right\rangle$
$\Psi(x)=\exp \left(\frac{1}{2} \varepsilon m \eta \Gamma_{45} \Gamma_{03}\right) \exp \left\{-\frac{1}{2}(m / \xi) \Gamma_{03}\left[\varepsilon\left(x_{1}^{2}+x_{2}^{2}\right) \Gamma_{45}+\Gamma_{1} x_{1}+\Gamma_{2} x_{2}\right]\right\} \varphi(\xi)$
21. $\left\langle G_{1}+P_{2}, G_{2}+\alpha P_{1}+\beta P_{2}, P_{0}+P_{3}\right\rangle$
$\Psi(x)=\exp \left(\frac{1}{2} \varepsilon m \eta \Gamma_{45} \Gamma_{03}\right)\left[f_{1}+\varepsilon \Gamma_{45}\left(g_{1} \Gamma_{1}+g_{2} \Gamma_{2}+g_{3} \Gamma_{03}\right)\right.$

$$
\left.+\Gamma_{03}\left(h_{1} \Gamma_{1}+h_{2} \Gamma_{2}\right)+\varepsilon u \Gamma_{45} \Gamma_{03} \Gamma_{1} \Gamma_{2}\right] \varphi(\xi)
$$

where
$f_{1}=1 \quad g_{1}=(\alpha m / \tau)\left(\xi x_{2}-x_{1}\right) \quad g_{2}=(m / \tau)\left[\xi x_{1}+(\beta \xi-\alpha) x_{2}\right]$
$h_{1}=(1 / 2 \tau)\left[\alpha x_{2}-(\xi+\rho) x_{1}\right] \quad h_{2}=(1 / 2 \tau)\left(x_{1}-\xi x_{2}\right)$
$g_{3}=-(m / 2 \tau)(\alpha+1) x_{1} x_{2} \quad u=-(m / 2 \tau)\left(-x_{1}^{2}+\alpha x_{2}^{2}+\beta x_{1} x_{2}\right)$
$\tau=\xi(\xi+\beta)-\alpha$
22. $\left\langle G_{1}, G_{2}+P_{1}+\beta P_{2}, P_{0}+P_{3}\right\rangle$
$\Psi(x)=\exp \left(\frac{1}{2} \varepsilon m \eta \Gamma_{45} \Gamma_{03}\right) \exp \left[-\left(x_{1} / 2 \xi\right) \Gamma_{03}\left(\varepsilon m x_{1} \Gamma_{45}+\Gamma_{1}\right)\right]$
$\times \exp \left\{\left[\varepsilon m x_{2}^{2} / 2(\xi+\beta)\right] \Gamma_{45} \Gamma_{03}\right\} \exp \llbracket\left[x_{2} /(\xi+\beta)^{2}\right]\left\{\varepsilon \Gamma_{45}\left[(1 / 2 \xi) \Gamma_{03} \Gamma_{1}\right.\right.$
$\left.\left.\left.+m\left(\Gamma_{1}+\beta \Gamma_{2}\right)\right](\xi+\beta)+[(1-\xi) / 2 \xi]\left(\xi+\beta-\varepsilon \beta \Gamma_{45}\right) \Gamma_{03} \Gamma_{1}\right\}\right] \varphi(\xi)$
23. $\left\langle G_{1}, G_{2}+P_{2}, P_{0}+P_{3}\right\rangle$
$\Psi(x)=\exp \left(\frac{1}{2} \varepsilon m \Gamma_{45} \Gamma_{03} \eta\right) \exp \left[-\left(x_{1} / 2 \xi\right) \Gamma_{03}\left(\varepsilon m x_{1} \Gamma_{45}+\Gamma_{1}\right)\right]$
$\times \exp \left\{\left[\varepsilon m x_{2}^{2} / 2(\xi+1)\right] \Gamma_{45} \Gamma_{03}\right]$
$\times \exp \left\{\left[x_{2} /(\xi+1)^{2}\right]\left[\varepsilon m(\xi+1) \Gamma_{45} \Gamma_{2}+\frac{1}{2}\left(\varepsilon \Gamma_{45}-\xi-1\right) \Gamma_{03} \Gamma_{2}\right]\right\} \varphi(\xi)$
24. $\left\langle J_{03}, G_{1}, P_{2}\right\rangle$

$$
\begin{aligned}
\Psi(x)= & \exp \left(\varepsilon m \Gamma_{45} \Gamma_{2} x_{2}\right) \exp \left[-\left(x_{1} / 2 \xi\right) \Gamma_{03} \Gamma_{1}\right] \\
& \times \exp \left(-\frac{1}{2} \Gamma_{0} \Gamma_{3} \ln \xi\right) \varphi\left(x_{0}^{2}-x_{1}^{2}-x_{3}^{2}\right) \\
25 .\left\langle J_{03}+\right. & \left.\alpha P_{1}+\beta P_{2}, G_{1}, P_{0}+P_{3}\right\rangle \\
\Psi(x)= & \exp \left(\frac{1}{2} \varepsilon m\right. \\
& \left.\Gamma_{45} \Gamma_{03} \eta\right) \exp \left[-\left(x_{1} / 2 \xi\right) \Gamma_{03}\left(\varepsilon m x_{1} \Gamma_{45}+\Gamma_{1}\right)\right] \\
& \times \exp \left\{(m x _ { 2 } / \xi ^ { 2 }) [- \xi \Gamma _ { 2 } + \beta (1 + \Gamma _ { 4 5 }) \Gamma _ { 0 3 }] \left[\xi \Gamma_{45}\left(\Gamma_{0} \Gamma_{3}-1\right)-\xi\right.\right. \\
+ & \left.\left.\Gamma_{03} \Gamma_{45}\left(\alpha \Gamma_{1}+\beta \Gamma_{2}\right)+\Gamma_{03}\right]\right\} \varphi(\xi)
\end{aligned}
$$

26. $\left\langle J_{12}+P_{0}+P_{3}, G_{1}, G_{2}\right\rangle$

$$
\begin{aligned}
\Psi(x)=\exp \{ & \left.(1 / 2 \xi) \Gamma_{03}\left(\Gamma_{1} x_{1}+\Gamma_{2} x_{2}\right)\right\} \\
& \times \exp \left\{\left[\left(x_{0}^{2}-x^{2}\right) / 2 \xi\right]\left[\varepsilon m \Gamma_{45} \Gamma_{03}+\frac{1}{2} \Gamma_{1} \Gamma_{2}\left(\varepsilon \Gamma_{45}-1\right)\right\} \varphi(\xi)\right.
\end{aligned}
$$

27. $\left\langle J_{03}+\alpha J_{12}, G_{1}, G_{2}\right\rangle$
$\Psi(x)=\exp \left[(1 / 2 \xi)\left(\Gamma_{1} x_{1}+\Gamma_{2} x_{2}\right) \Gamma_{03}\right]$

$$
\times \exp \left[-\frac{1}{2}\left(\Gamma_{0} \Gamma_{3}+\alpha \Gamma_{1} \Gamma_{2}\right) \ln \xi\right] \varphi\left(x_{0}^{2}-x^{2}\right) .
$$

The following notations were used in the above ansätze:

$$
\begin{array}{ll}
G_{\kappa}=J_{0 \kappa}+J_{\kappa 3} & \kappa=\overline{1,2} \\
\xi=x_{3}+x_{0} & \eta=x_{3}-x_{0} \\
\Gamma_{03}=\Gamma_{0}+\Gamma_{3} & \Gamma_{45}=\Gamma_{4}+\Gamma_{5}
\end{array}
$$

α and β are constants, $\varphi(z)$ is a new unknown spinor and $\left\langle Q_{1}, Q_{2}, Q_{3}\right\rangle$ is a subalgebra of the algebra (3) and (4) having basis elements Q_{1}, Q_{2}, Q_{3}.

Let us adduce an example of reduced ode. If one substitutes ansatz 8 into (2) then the equation for $\varphi(z)$ becomes

$$
\left[2 z^{1 / 2} \Gamma_{2} \mathrm{~d} / \mathrm{d} z+\frac{1}{2} z^{-1 / 2} \Gamma_{2}-m+2 \varepsilon m\left(\Gamma_{4}+\Gamma_{5}\right)\right] \varphi(z)=0 .
$$

Note 1. If one puts $\varepsilon=0$ in (3) then (3) and (4) generate the local Lie group $\mathrm{P}(1,3)$. That is why, on putting $\varepsilon=0$ into the ansätze above, one obtains Poincaré-invariant ansätze for the spinor field constructed in [3].

Note 2. The above non-local ansätze can be applied to the construction of exact solutions of non-linear Lorentz-invariant spinor equations admitting the group (5). One example of such equations is

$$
\left\{\partial_{\mu} \partial^{\mu}+\lambda\left[\bar{\Psi}\left(\Gamma_{4}+\Gamma_{5}\right) \Gamma_{\mu} \partial_{\mu} \Psi\right]\left(\Gamma_{4}+\Gamma_{5}\right)\right\} \Psi=0
$$

where λ is constant and $\bar{\Psi}=\Psi^{\top} \Gamma_{0} \Gamma_{4}$. This problem will be considered in a future publication.

References

[1] Fushchich W I and Nikitin A G 1987 Symmetries of Maxwell's Equations (Dordrecht: Reidel)
[2] Fushchich W I and Zhdanov R Z 1987 J. Phys. A: Math. Gen. 204173
[3] Fushchich W I and Zhdanov R Z 1988 Fiz. Elem. Cast. Atom. Jadra (USSR) 19 to appear
[4] Patera J, Winternitz P and Zassenhaus H 1975 J. Math. Phys. 161597
[5] Kamran N, Légaré M, McLenaghan R G and Winternitz P 1988 J. Math. Phys. 29403
[6] Fushchich W I 1971 Teor. Mat. Fiz. 73
[7] Fushchich W I 1974 Lett. Nuovo Cimento 11508
[8] Fushchich W I and Zhdanov R Z 1987 Symmetry and Solutions of Nonlinear Equations of Mathematical Physics (Kiev: Mathematical Institute) p 17

