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LETTER TO THE EDITOR 

Non-local ansatze for the Dirac equation 

W I Fushchich and R Z Zhdanov 
Institute of Mathematics, Repin Street 3, Kiev-4, USSR 

Received 5 July 1988 

Abstract. Using non-local (non-Lie) symmetry of the linear Dirac equation we have 
constructed a number of new ansatze reducing it to systems of ordinary differential 
equations. 

It is well known (see e.g. [l]) that the PoincarC group P(1,3) is a maximal local (in 
Lie’s sense) invariance group of the linear Dirac equation 

(iY,8, + m ) l L ( x )  = 0 m = constant (1) 
- 

where +=t,b(x,,,x) is a four-component spinor, 8, =8/ax, ,  p =0 ,3  and y, are 
imaginary 4 x 4 matrices satisfying the Clifford algebra 

1 p = v = o  
- 

y,yu+ yyy, =2g,,I = 2 I  -1 p = v =  1,3  [ 0 p#v. 

In [2,3] ansatze reducing the Dirac equation to systems of ordinary differential 
equations (ODE) were constructed, the subgroup structure of the group P( 1,3) investi- 
gated in detail by Patera et a1 [4,5] being used. 

As shown in [l ,  6,7] equation (1) possesses non-local (non-Lie) symmetry. So far 
this additional non-local symmetry has not been used to construct ansatze reducing 
the Dirac equation to systems of ODE. In the present paper we construct a number of 
such ansatze following an approach suggested in [3,8]. 

If one puts 

r, = diag( -i y,, -i y,) qT= (Re 4, Im $)’ 

then equation (1) becomes 

(r,dr - m ) q ( x )  = 0. 

It is common knowledge that the complete set of first-order symmetry operators 
of the Dirac equation (2) is not a Lie algebra. We have succeeded in picking out the 
subset which forms the Lie algebra of the PoincarC group: 

P, = [I + 4r4+r5)l8, + &m(r4+r5)r, (3) 

J , ~ =  -x,a”+x,dp -:(r,ru-rvr,) (4) 
where E = constant, 8, = gpu8, for p, Y = o,3 and 
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It is important to note that operators ( 3 ) a  generate non-local group of transforma- 
tions 

qf = [ I  - &m(r4+r5 )e , r , ]9+  4r4+r5)0,9xp xh = x, + 8, ( 5 )  

where el, are group parameters. 
According to [4,8] there exists a correspondence between three-dimensional sub- 

algebras of the algebra (3) and (4) and ansatze reducing the Dirac equation (2) to 
ODE. Omitting very cumbersome intermediate calculations we write the final result for 
the non-local ansatze for the spinor field. 
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where 
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The following notations were used in the above ansatze: 
- 

G K  = J o K  + J K 3  K=1,2  

t=x3+xo 7=x, -x ,  

~ 0 3  = ro+ r3 r45=r4+r5 
(Y and p are constants, cp (2)  is a new unknown spinor and ( Q1, Q2,  Q3) is a subalgebra 
of the algebra (3) and (4) having basis elements Q1, Q 2 ,  Q3. 

Let us adduce an example of reduced ODE. If one substitutes ansatz 8 into (2) 
then the equation for cp(z) becomes 

[2z1/2r2 d/dz+tz- ' /2r,-  m + 2 & m ( r 4 + r 5 ) ] p ( ~ )  = 0. 

Note 1 .  If one puts E = 0 in (3) then (3) and (4) generate the local Lie group P(1,3). 
That is why, on putting E = 0 into the ansatze above, one obtains PoincarC-invariant 
ansatze for the spinor field constructed in [3]. 

Note 2. The above non-local ansatze can be applied to the construction of exact 
solutions of non-linear Lorentz-invariant spinor equations admitting the group (5). 
One example of such equations is 

@,ap +~[m(r,+r,)r,a,~](r,+r,))w = o  

where A is constant and m=WTToT4.  This problem will be considered in a future 
publication. 
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